

Multiple Phase Flow

Burhan S Abdulrazak, Ph.D. Chemical Engineering Department

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Lecture Notes: Homogeneous Flow Model

Introduction

كلية المندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Key Assumptions Uniform Flow:

- The velocity of all phases is the same $(u_g = u_l = u)$.
- There is no slip between the phases.

Uniform Properties:

• The phases are completely mixed, resulting in uniform properties (e.g., density and viscosity).

No Interphase Interactions:

No relative motion or momentum exchange between phases.

Steady-State Flow:

The flow does not change with time (optional assumption, depending on the problem).

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Governing Equations

1. Mass Conservation:

For a control volume in steady-state conditions:

$$\frac{\partial(\rho u)}{\partial z} = 0$$

Where:

- ρ: Mixture density
- u: Mixture velocity
- z: Flow direction

2. Momentum Conservation:

$$\frac{\partial}{\partial z}(\rho u^2) = -\frac{\partial p}{\partial z} - \rho g + \tau_w$$

Where:

• p: Pressure

 τ_w : Wall shear stress

• g: Gravitational acceleration

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

معنوب المعنوب المعنوب المعنوب المعنوب المعنوب المعنوب المحاوم لمحاوم المحاوم محاوم المحاوم المحاوم محاوم محاوم محاوم محاوم محاوم محاوم محاوم محاوم محاوم

3. Energy Conservation:

$$\frac{\partial}{\partial z} \left(\rho u h + \frac{1}{2} \rho u^3 \right) = q$$

Where:

- h: Specific enthalpy
- q: Heat transfer per unit length

Mixture Properties

In the homogeneous flow model, mixture properties are defined as weighted averages of the individual phase properties based on volume fractions (α_g for gas and α_l for liquid):

Mixture Density (ρ_m):

$$\rho_m = \alpha_g \rho_g + \alpha_l \rho_l$$

Where:

• ρ_{g} , ρ_{l} : Densities of gas and liquid phases

 α_g , α_l : Volume fractions ($\alpha_g + \alpha_l = 1$)

Dr. Burhan S. A.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Mixture Viscosity (μ_m) :

$$\mu_m = \alpha_g \mu_g + \alpha_l \mu_l$$

Where:

• μ_g , μ_l : Viscosities of gas and liquid phases

Mixture Velocity (*u_m*):

$$u_m = \frac{\dot{m}}{\rho_m A}$$

Where:

- m: Total mass flow rate
- A: Cross-sectional area

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

البدالية العدمة البدالية العدمة البدالية مريقك إلى المجاح your way to success

Applications

Two-Phase Flow in Pipes:

- Used in pipelines transporting oil, gas, and water mixtures.
- Simplifies analysis of pressure drop and flow rates.

Nuclear Reactor Systems:

• Analyzing coolant flow in boiling water reactors.

Chemical Process Engineering:

• Modeling gas-liquid reactors and flow in distillation columns.

Cryogenic Systems:

• Studying two-phase flow of liquid and vapor in cryogenic pipelines.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

مريقات إلى المجاح بريقات إلى المجاح بريقات إلى المجاح

Advantages

Simplicity:

- Easy to implement due to reduced complexity.
- Fewer equations and assumptions are needed compared to other models.

Computational Efficiency:

 Requires less computational power compared to slip or drift models.

Useful for Preliminary Design:

• Provides approximate results for initial engineering analysis.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Limitations

No Slip Consideration:

 Assumes no velocity difference between phases, which is unrealistic in many practical cases.

Limited Accuracy:

 Does not account for phase interactions, making it less reliable for predicting detailed flow behavior.

Inapplicable to Flow Regimes with Phase Separation:

 Cannot describe stratified, annular, or churn flows where phases are not well-mixed.

Neglects Interphase Forces:

• Forces such as drag, lift, and turbulent diffusion are ignored.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Comparison with Other Models

Aspect	Homogeneous Model	Slip Models	Two-Fluid Models
Assumption	Single velocity field	Different velocities	Separate equations for phases
Complexity	Low	Moderate	High
Accuracy	Low	Moderate	High
Computational Cost	Low	Moderate	High

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Example Calculation

Problem: A horizontal pipe carries a gasliquid mixture with α_g =0.4, ρ_g =2 kg/m³, ρ_l =1000 kg/m³, and \dot{m} =50 kg/s. The pipe diameter is 0.1 m. Calculate the mixture density and velocity.

Solution:

Mixture Density:

 $\rho_m = \alpha_g \rho_g + \alpha_l \rho_l$ $\rho_m = (0.4)(2) + (0.6)(1000)$ = 600.8 kg/m³ **Cross-sectional Area**:

$$A = \frac{\pi D^2}{4} = \frac{\pi (0.1)^2}{4} = 0.00785 \ m^2$$

Mixture Velocity:

$$u_m = \frac{\dot{m}}{\rho_m A}$$
$$u_m = \frac{50}{600.8 \times 0.00785} \approx 10.6 \text{ m/s}$$

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Problem Statement

A horizontal pipeline with a diameter of D = 0.1 m transports a gas-liquid mixture. The following properties are given:

- Gas volume fraction $(\alpha g) = 0.3$
- Gas density $(\rho g) = 5 \text{ kg/m3}$
- Liquid density $(\rho l) = 1000 \text{ kg/m3}$
- Total mass flow rate (m^{\cdot}) = 100 kg/s

Determine the following:

Mixture density (pm)

Mixture velocity (um)

Pressure drop per unit length ($\Delta P/L$) assuming a friction factor f = 0.02.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

طريقك إلى اخدا DUR WAY TO SUCCESS

Solution

$$ho_m = lpha_g
ho_g + (1-lpha_g)
ho_l$$

Substitute the given values:

$$ho_m = (0.3)(5) + (1 - 0.3)(1000)$$
 $ho_m = 1.5 + 700 = 701.5 \, {
m kg/m}^3$

The total mass flow rate is related to the mixture density and velocity by:

$$\dot{m} =
ho_m u_m A$$

Rearranging for um:

$$u_m=rac{\dot{m}}{
ho_m A}$$

كلية المندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

OUR WAY TO

The cross-sectional area of the pipe is:

$$A = rac{\pi D^2}{4} \ A = rac{\pi (0.1)^2}{4} = 0.00785 \, \mathrm{m}^2$$

Substitute the values:

100 $u_m=\overline{701.5 imes 0.00785}$ $u_m \approx 18.19 \,\mathrm{m/s}$

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Pressure Drop per Unit Length

 $\frac{\Delta P}{L} = f \frac{\rho_m u_m^2}{2D}$

Substitute the known values:

The pressure drop per unit length in a pipe is given by the Darcy-Weisbach equation:

 $\mathbf{2}$

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Conclusion

The homogeneous flow model is a simple and effective tool for approximating multiphase flow behavior in systems where phases are well-mixed and flow properties are relatively uniform. However, its limitations require engineers to supplement it with more advanced models for systems with significant phase separation or interphase interactions.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University